Energy storage: Why it’s Canada’s moment

Energy storage: Why it’s Canada’s moment

Note: A version of this post originally appeared in The Globe and Mail on October 5.

Canada has a chance to add a new dimension to its energy economy—one that is clean, profitable and globally groundbreaking.

The opportunity is electricity storage, which until now has been limited by technology to a relatively modest scale. That’s about to change. And it means that Canada—and specifically Ontario—can become an ideal seedbed for storage technology, because there are ready markets for both large- and small-scale storage systems.

First, the large scale. Ontario has a fleet of nuclear generators that operate around the clock, and come close to filling the demand for power at off-peak hours. In addition, Ontario has developed a large renewable energy sector of wind and solar generation (in addition to its traditional hydro stations.) Problems sometimes arise when the natural weather cycles that drive wind and solar production are out of synch with the market cycle. On a sunny, breezy Saturday afternoon in May, with the nuclear plants running flat out, the hydro stations churning out power with the spring runoff and solar and wind systems near peak production, Ontario may have more electricity than it needs.

Our electricity system operators have a solution, of course: Sell the excess electricity to our neighbours. But since our neighbours are often in the same boat, Ontario must cut the price close to zero—or in extreme situations, even pay neighbouring states or provinces to absorb our overproduction.

Wouldn’t it make far more sense to store that excess energy, knowing that it will be needed in a matter of days, or even hours? What’s been lacking is the technology to do the job.

That’s changing however, as Ontario’s current program to procure 50 megawatts of storage capacity demonstrates. Companies with a variety of approaches are working hard to bring their solutions to market – many of them clustered at the MaRS centre in Toronto. Some, such as Hydrogenics Corp., convert electricity into hydrogen, which can be used to supplement natural gas.

My own company, NRStor, has partnered with Temporal Power and is operating a flywheel storage system in Minto, Ont., that helps the market operator to maintain consistent voltage on the grid.

Of course, businesses around the globe are looking at the same opportunities as we are, and here lies the opportunity for Canada to rebrand its energy economy.

A recent report by Deutsche Bank calls battery storage the “holy grail of solar penetration,” and believes that with the current rate of progress in improving efficiency, mass adoption of lithium ion batteries at a commercial/utility scale could occur before 2020.

Analysis by Prof. Andrew Ford of Washington State University calculates that a 1,000-megawatt air storage system from U.S.-based General Compression Inc. could deliver $6- to $8-billion of value to Ontario—in the form of lower energy costs to local utilities—over a 20-year period. All this is of interest to large-scale electricity system operators, big utilities and their customers.

But there is another reason for us to pay attention to energy storage—a reason grounded on a much more human scale. There are still large rural areas around the globe where there is no reliable electrical grid—including Northern Canada.

There is great potential for these communities, including remote First Nations communities, to improve their standard of living by installing microscale renewable generation in combination with storage, and relying less on carbon-spewing diesel generators, powered by fuel that must be transported long distances at great expense.

Storage is the key to making renewable energy a fully competitive component of any electrical grid. It can make our grid cleaner and more efficient, for the benefit of all consumers—large and small, urban and rural. We have the chance, in Canada, to become world leaders in developing this technology. Let’s seize it.

Photo credit: Electricity by Bert Kaufmann under CC BY 2.0